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Abstract. Expressions for zeroth, second and fourth sum rules of longitudinal and bulk stress auto corre-
lation functions have been derived for binary fluid mixtures. Longitudinal and bulk viscosities of an Ar–Kr
mixture have been calculated using Mori’s memory function formalism coupled with the sum rules of lon-
gitudinal and bulk stress auto correlation functions. The results obtained are compared with the molecular
dynamics simulation. Mass dependence of the longitudinal and bulk viscosities has been studied for differ-
ent compositions of an isotopic mixture at different densities and temperatures. For very large mass ratio,
the longitudinal and bulk viscosities of the isotopic mixture are more dependent on mole fraction than on
mass.

PACS. 66.20.+d Viscosity of liquids; diffusive momentum transport – 51.20.+d Viscosity, diffusion, and
thermal conductivity – 05.60.Cd Classical transport

1 Introduction

To study transport coefficients of classical dense fluids, a
considerable amount of work has been done during the
last four decades resulting in an appreciable progress in
the understanding of transport coefficients of pure flu-
ids. Transport properties of binary fluid mixtures have
also been of interest to physicists and chemists. Molecu-
lar dynamics (MD) simulation studies on mixtures of hard
sphere fluids [1], soft sphere fluids [2,3] and Lennard-Jones
(LJ) fluids [4–6], have been undertaken to study the trans-
port properties. Among all hydrodynamic transport coef-
ficients, the longitudinal and bulk viscosities of mixtures
have been least investigated. The bulk viscosity, which is
a measure of the resistance of a medium subject to com-
pression or expansion, has relevance to the behavior of
fluids under rapid loading conditions. It also plays an im-
portant role in studying the dynamical structure factor,
in understanding the attractive intermolecular forces and
also acoustic phenomena at the microscopic level. In spite
of their importance detailed investigations of the longitu-
dinal and bulk viscosities, have not been possible due to
the involved complications. For example they cannot be
measured directly by the experiments.

Longitudinal and bulk viscosities can be studied by
computer simulation techniques using the Green-Kubo
method [7] which expresses them as time integral of the
longitudinal and bulk stress auto-correlation (SAC) func-
tions. The longitudinal viscosity, ηl = 4

3ηs+ηB (ηs and ηB
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are shear and bulk viscosities) can also be calculated from
the knowledge of shear and bulk viscosities of the system.
There are other alternative ways to study the bulk viscos-
ity by computer simulation techniques. First method uses
non-equilibrium molecular dynamics and the second has
been recently suggested by Okumura and Yonezawa [8].
All methods used to study the bulk viscosity of fluids have
provided similar results [8–12]. However, with a few excep-
tions, considerable deviations between simulations and ex-
perimental results [13,14] have been observed [12]. There-
fore, though the computer simulation technique provides
sufficient information about viscosities, theoretical studies
are equally important as these may provide additional in-
formation for understanding the involved processes. Theo-
retically, the bulk viscosity can be calculated by studying
the time evolution of the stress auto correlation functions
appearing in the Green- Kubo expressions. The stress au-
tocorrelation function can be calculated from knowledge
of sum rules coupled with Mori’s memory function ap-
proach [7,15,16]. The advantage of this approach is that
one can introduce an approximate form [17] of the mem-
ory function while preserving a number of properties of
the time correlation function. There exist few such the-
oretical studies [18,19] for the bulk and longitudinal vis-
cosities of pure system like dense inert gases and liquid
metals. However, there is no such study available for bi-
nary fluid mixtures. Therefore, in the present work, we
derive expressions for the zeroth, second and fourth sum
rules of the longitudinal and bulk SAC functions for binary
fluid mixtures. These expressions are quite general and are
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applicable to any two component system. We have put
these expressions in a form suitable for numerical calcula-
tions. Numerical results have been obtained for the longi-
tudinal and bulk viscosities of an equimolar Ar–Kr mix-
ture which have been compared with computer simulation
data [4].

We have also studied the composition dependence of
the longitudinal and bulk viscosities of the modeled mix-
ture wherein particles of the two species have different
masses. This study has proved useful in predicting the
significant role played by composition over that of ratio of
particle masses while preparing a mixture with high vis-
cosity. We have also studied the mass dependence of the
longitudinal and bulk viscosity of an isotopic mixture at
different thermodynamic states. It is found that the effect
of density and temperature on the ratio of viscosities of
mixture to that of the pure fluid is more pronounced for
the longitudinal viscosity than for the bulk viscosity.

The paper is organised as follows. In Section 2, we
present the generalities. Expressions for the sum rules of
the bulk stress autocorrelation function for general binary
mixtures and for isotopic systems are presented in Sec-
tion 3. In Section 4, results and the involved discussion
have been presented. Section 5 provides a summary and
conclusion.

2 Generalities

The Green-Kubo expression relates the bulk viscosity of
a fluid mixture ηB directly to bulk stress autocorrelation
function, SB(t) [7]

ηB =
1

V kBT

∫ ∞

0

dtSB(t), (1)

where V , kB and T are the volume of the system, the
Boltzmann constant and the temperature, respectively.
Bulk stress auto correlation (BSAC) function SB(t) is de-
fined as

SB(t) =
1
9

∑
a

∑
b

〈Jaa(t)Jbb(0)〉, (2)

with

Jab =
N∑

j=1

(
pjapjb

m
+ rjaFjb) − δabV

(
P +

dP

dĒ
(E − Ē)

)
,

(3)
where a and b run over Cartesian coordinates x, y and z.
In a binary system, N = N1 + N2 is the total number of
particles with N1 and N2 being the number of particles
of species 1 and 2. The angular brackets in equation (2)
represent ensemble average. pja, rja and Fja are ath com-
ponent of velocity, position, and force vectors of the jth
particle, respectively. E is the total energy of the system.
Expressions for the average energy Ē and pressure P in
terms of the pair potential u(r) are given by

Ē =
3
2
NkBT + 2π

2∑
i,j=1

Ninj

∫ ∞

0

r2gij(r)uij(r)dr, (4)

and

PV = NkBT − 2π

3

2∑
i,j=1

Ninj

∫ ∞

0

drr3gij(r)
duij

dr
, (5)

where ni, and Ni represent the number density and num-
ber of particles, respectively, of species i. gij(r) is the
partial pair correlation function between particles of the
species i and j. Alternatively, the bulk viscosity can be cal-
culated from the knowledge of longitudinal viscosity and
shear viscosity by using the following Green-Kubo rela-
tion [7]

ηl =
4
3
ηs + ηB =

1
V kBT

∫ ∞

0

dtSl(t) (6)

The longitudinal stress autocorrelation (LSAC) function,
Sl(t), is defined as

Sl(t) =
1
3
〈Jaa(t)Jaa(0)〉. (7)

These Green Kubo expressions coupled with sum rules
of stress auto correlation provide one of the method of
calculation of viscosity of liquid mixture.

3 Expressions for the sum rules

It has not yet been possible to calculate Sl/B(t) exactly
for a system of particles which interact by realistic po-
tentials. Therefore, we study LSAC/BSAC functions by
examining their short time-expansion

Sl/B(t) = S
l/B
0 − S

l/B
2

t2

2!
+ S

l/B
4

t4

4!
..., (8)

where S
l/B
0 , S

l/B
2 , and S

l/B
4 are the zeroth, second and

fourth order sum rules of the corresponding stress auto-
correlation functions, respectively. We present below the
results for the BSAC function and the expressions for the
sum rules of the LSAC function can be obtained in a
similar manner and are presented in the Appendix A.

3.1 BSAC function

The expression for the zeroth sum rule of the BSAC func-
tion can be obtained by putting t = 0 in equation (2) and
evaluating the canonical ensemble averages. The expres-
sion obtained is given by

SB
0 =

8
3
(kBT )2 +

2π

9
kBT

2∑
i,j=1

Ninj

×
∫ ∞

0

drr4gij(r)(Aijr
2 − Bij)

−5(V dP/dĒ)(kBT )2 − (PV )2

+(V dP/dĒ)2(6(kBT )2 − Ē2)

+2PV 2(dP/dĒ)
(

Ē − 3
2
kBT

)
, (9)
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In equation (9) and in what follows, we use the following
notations

Bij =
1
r

duij(r)
dr

, Aij =
1
r

dBij

dr
, Cij =

1
r

dAij

dr
, Dij =

1
r

dCij

dr
.

(10)
The derivation of the second sum rule of the BSAC func-
tion for binary mixtures requires the calculation of the
ensemble average

SB
2 = 〈J̇aa(t)J̇bb(t)〉t=0, (11)

where J̇bb(t) represents the first time derivative of Jbb(t).
The expression obtained contains correlations upto three
particles and can be expressed as

SB
2 = SB

22 + SB
23. (12)

In above equation and in what follows Snm represents m
body contribution to the nth sum rule. The expression
obtained for SB

22 and SB
23 are, respectively, given as

SB
22 =

4π

9
(kBT )2

2∑
i,j=1

Ninj

mi

∫ ∞

0

drr2gij(r)

× [
(6Cijr

4 + 45Aijr
2 + 45Bij)

+r2(kBT )−1(Aijr
2 + Bij)2

]
(13)

SB
23 =

8π2

9
kBT

2∑
i,j,k=1

Ninjnk

mi

∫ ∞

0

dr

×
∫ ∞

0

dr1

∫ 1

−1

dβ1g
ijk
3 (r, r1)r2r2

1rr1β1

× (
AijA1ijr

2r2
1+BijA1ijr

2
1+AijB1ijr

2+BijB1ij

)
(14)

where gijk
3 (r, r1) is the static triplet correlation function.

In equation (14) and what follows, the subscript 1 on A
and B implies that the argument of the pair potential
function u(r) is changed to r1. β1 is the cosine of the
angle between the vectors r and r1.

The fourth sum rule of the BSAC function is defined
as

SB
4 = 〈J̈aa(t)J̈bb(t)〉t=0, (15)

where J̈aa(t) is the second time derivative of equation (3)
with respect to time. The expression for the fourth sum
rule SB

4 , in addition to the pair correlation function, con-
tains triplet and quadruplet distribution functions. The
triplet contribution to SB

4 will be estimated by expression
known for pure fluids as explained in the Appendix B. The
expression obtained for the fourth sum rule of the BSAC
function containing only two-body correlation function is

given by

SB
42 =

4π

9
(kBT )

2∑
i,j=1

Ninj
1
4

(
1

mi
+

1
mj

)2

×
∫ ∞

0

drgij(r)r2
[
18(kBT )2(Dijr

4

+10Cijr
2 + 15Aij) + kBT (378B2

ij + 432A2
ijr

4

+612AijBijr
2 + 72BijCijr

4 + 108AijCijr
6

+6C2
ijr

8) + 2r2(Bij + Aijr
2)3 − 4B3

ijr
2
]
. (16)

It is noted that already known expressions of S
B/l
0 , S

B/l
2

and S
B/l
42 for the pure fluids [18,19] can be obtained by

setting the number of particles of one of the species equal
to zero.

3.2 Isotopic system

We consider a binary system in which the two species
differ only by their masses. The system has N1 and N2

particles of mass m1 and m2, respectively. To study the
effect of mass and composition on the longitudinal and
bulk viscosities we have first examined the mass depen-
dence of the sum rules. For this purpose we have derived
expressions for mass ratio and composition dependence of
the sum rules of the LSAC/BSAC function by consider-
ing the same radial distribution function and interaction
potential for the like and unlike species. The zeroth sum
rule, S

l/B
0 (m1, m2) of an isotopic system does not explic-

itly involve mass and is therefore same as that of the pure
fluid i.e.,

S
l/B
0 (m1, m2) = S

l/B
0 (m1), (17)

where S
l/B
0 (m1) is zeroth sum rule of pure fluid. From the

equation (17) we observe that S
l/B
0 (m1, m2) does not de-

pend on the mass and composition of the second species.
This implies that mass and composition dependence will
come only from the relaxation processes through S2 and
S4. Similarly, by taking only masses of two particles dif-
ferent, from equations (13), (14) and (16) we obtain ex-
pressions for the mass and composition dependence of the
second and fourth sum rules of the BSAC functions of iso-
topic systems. The resulting expressions are expressible in
terms of expression for a pure fluid and are given by

S
l/B
2 (m1, m2) =

[
c + (1 − c)

m1

m2

]
S

l/B
2 (m1), (18)

and

S
l/B
4 (m1, m2) =

1
2

[
c(1 + c)

+ (1 − c)(2 − c)
(

m1

m2

)2

+ 2c(1 − c)
m1

m2

]
S

l/B
4 (m1),

(19)
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where c = N1/N is the mole fraction of particles with mass
m1. S

l/B
2 (m1) and S

l/B
4 (m1) are the second and fourth

sum rules of LSAC and BSAC functions which were ob-
tained by Tankeshwar et al. [18]. It also implies that for
isotopic fluid mixtures sum rules of shear, bulk and longi-
tudinal stress scales in a similar fashion.

Following the Mori’s memory function formalism we
obtain approximate expression [19,20] for viscosities in
terms of sum rules given as

ηl/B =

√
2
π

n

kBT

(
(Sl/B

0 )2

S
l/B
2

) (
S

l/B
4

S
l/B
2

− S
l/B
2

S
l/B
0

)1/2

, (20)

where n is the total number density. This expression has
already been used to study the shear viscosity of pure flu-
ids [19] and binary mixture [20] using sum rules of the
transverse stress autocorrelation function. In the present
work, we use equation (20) and the corresponding sum
rules S

l/B
0 , S

l/B
2 and S

l/B
4 for the calculation of longitu-

dinal and bulk viscosities of an Ar–Kr mixture and an
isotopic system.

4 Results and discussion

4.1 Ar–Kr system

In order to calculate longitudinal and bulk viscosities of
Ar–Kr mixture, we need to compute values for S

l/B
0 , S

l/B
2

and S
l/B
4 . The required inputs for the calculation of the

sum rules of the LSAC/BSAC functions are the inter-
action potential between like and unlike particles, par-
tial static pair correlation functions gij(r), and partial
triplet correlation functions. The pair interaction poten-
tial, which we use for for interaction in Ar–Kr system is
the Lennard-Jones potential

uij(r) = 4εij

[(σij

r

)12

−
(σij

r

)6
]

, (21)

where i and j indicate particles of species i and j. For
interactions between unlike particles, σ12 and ε12 are given
by the Lorentz-Berthelot mixing rules

σ12 = (σ11 + σ22) /2 (22)

and
ε12 = (ε11 × ε22)

1/2
. (23)

For Ar–Kr system, the values for ε for the Ar–Ar and
the Kr–Kr interactions are taken as ε11 = 120 K × kB,
ε22 = 167 K×kB, respectively. According to equation (23)
the value of ε12 is 141.56 K × kB. The interatomic ra-
dius for Ar–Ar is 0.3405 nm and for Kr–Kr is 0.3633 nm.
This parameter for Ar–Kr is obtained to be 0.3519 nm.
We perform calculations for the equimolar mixture of Ar
and Kr at the thermodynamic state with the mass density
=1.84 g cm−3 and the temperature =121.7 K. This ther-
modynamic state is close to the triple point in the liquid

Table 1. Results for the zeroth, second and fourth sum rules
of the BSAC function obtained from equation (9), (13), (14)
and (16) in units of 10−43 J2, 10−17 J2 s−2 and 1010 J2 s−4,
respectively.

SB
nm Ar–Ar Ar–Kr Kr–Kr

SB
0 131.64 381.07 326.60

SB
22 102.34 294.74 218.61

SB
23 –29.44 –92.09 –48.85

SB
42 48.92 96.41 48.19

SB
43 –18.6 –30.5 –16.02

Table 2. Results for zeroth, second and fourth sum rules
of LSAC function obtained from equations (A.2)–(A.4) for
the Ar–Kr mixture in units of 10−43 J2, 10−17 J2 s−2 and
1010 J2 s−4, respectively.

Sl
nm Ar–Ar Ar–Kr Kr–Kr

Sl
0 311.68 804.14 658.00

Sl
22 197.24 555.47 405.38

Sl
23 –52.28 –163.7 –85.58

Sl
42 92.23 180.17 88.29

Sl
43 –31.3 –51.0 –22.5

region. This thermodynamic state is chosen as molecular
dynamics (MD) data for partial pair correlation functions
is available only for this state in the literature [5]. In the
present work we have taken ideal gas values of V dP/dĒ,
PV and Ē for calculating S

l/B
0 as it is expected that the

potential-potential contribution dominates [21] near triple
point. For the calculation of the triplet contribution to sec-
ond and fourth sum rules, we have used the superposition
approximation as described in the Appendix B. The su-
perposition approximation has been tested [22] for a pure
system by performing MD simulations for LJ fluids and it
has been found that near the triple point it overestimates
the results by only 10 percent.

Numerical integrations have been carried out by using
the Gauss quadrature method. Results for the sum rules
are given in Tables 1 and 2, where S

l/B
nm represents the m

body contribution to the nth sum rule. In these tables,
contributions due to Ar–Ar, Ar–Kr, and Kr–Kr interac-
tions are presented separately. It can be seen from the
tables that contributions of triplet correlation functions
to second and fourth sum rules is up to 30 percent of the
contributions due to static pair correlations.

With results for the sum rules from Table 1, equa-
tion (20) yields ηB = 20.62 × 10−5 Pa s for the equimo-
lar Ar–Kr mixture. The available computer simulation
value [4] is 18.5 × 10−5 Pa s for a state very close to
the thermodynamic state considered in the present work.
For mole fractions c = 0.4 and c = 0.6, available sim-
ulation data [4] for the bulk viscosity are ηB = 20.5 ×
10−5 Pa s and ηB = 15.6 × 10−5 Pa s, respectively. The
corresponding theoretical value of the shear viscosity is
27.87 × 10−5 Pa s [20]. This yields theoretical value of
ratio of bulk to shear viscosity of 0.74 which is in close
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agreement with the MD value of 0.78. Using the results
for the sum rules from Table 2 in equation (20), we ob-
tain ηl = 50.0 × 10−5 Pa s for the equimolar Ar–Kr mix-
ture. The corresponding computer simulation [4] value is
49.8 × 10−5 Pa s. For composition c = 0.4 and c = 0.6,
available simulation data are ηl = 56.7 × 10−5 Pa s and
ηl = 44.52 × 10−5 Pa s, respectively. Thus, we see that
our method provides a reasonably good description of
bulk and longitudinal viscosities of fluid mixtures as far
as the comparison with simulation data. Here, it is im-
portant to note that simulation results for the bulk vis-
cosity show poor agreement with experimental data, de-
spite good agreement with other simulation data as has
been pointed by Fernandez et al. [12]. Thus present work
strengthening the view point that accurate experimental
data for bulk viscosity, a property which is difficult to
measure experimentally, is not available.

It has been known that many body correlations play
important role in predicting the transport coefficients. In
order to examine the importance of the triplet correlation
in the present case, we have calculated longitudinal and
bulk viscosities by neglecting the triplet contributions to
second and fourth sum rules. The value of longitudinal and
bulk viscosities are 36.22×10−5 Pa s and 15.87×10−5 Pa s.
Therefore, it can be said that many body correlation plays
an important role in explaining the large viscosity of a
dense system.

There exist mixing rules/empirical models namely lin-
ear and exponential models for the prediction of viscosity
of binary mixture. In the present work, we also compare
our results with predictions of these models and subse-
quently use these models to compare our results for iso-
topic fluid wherein no other study is available. According
to the linear model [23] viscosity of the mixture, ηmix, can
be obtained from the following relation

ηmix = (1 − c) ηKr + cηAr, (24)

where c is the composition of Ar in Ar–Kr mixture. Us-
ing simulation data [4] for pure system i.e., ηAr

B = 9.75 ×
10−5 Pa s and ηKr

B = 32.2 × 10−5 Pa s the bulk viscosity
of equimolar mixture is found to be 21.0 × 10−5 Pa s.
Using simulation data [4] for pure system i.e., ηAr

l =
30.54 × 10−5 Pa s and ηKr

l = 85.0 × 10−5 Pa s the value
of longitudinal viscosity of equimolar mixture is found to
be 57.7 × 10−5 Pa s.

On the other hand, there is a more reliable exponential
model [24] which reads

ηmix = exp[(1 − c) ln(ηKr) + c ln(ηAr)]. (25)

Using simulation data of pure Ar and Kr systems, the
results for the longitudinal and bulk viscosities are 52.7×
10−5 Pa s and 17.7×10−5 Pa s, respectively. Thus, we find
that equation (25) provided [20] better results than the
linear model for the longitudinal viscosity and for the bulk
viscosity. Here it may be recalled that equation (25) also
provides better results for the shear viscosity of mixtures
than equation (24).
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Fig. 1. Variation of the second sum rule, SB
2 (m1, m2) as

obtained from equation (18) in unit of 10−17J2 s−2 of
LSAC/BSAC functions of an isotopic system with mass ratio
m2/m1 of two species at c = 0.25 and c = 0.75.

4.2 Isotopic system

In order to study the bulk viscosity of a binary mixture
with same size of particles and same interaction between
them, the zeroth, second, and fourth sum rules of BSAC
function have been computed numerically for pure Ar sys-
tem at n∗ = nσ3 = 0.584 and T ∗ = kBT/ε = 1.19. The
results obtained for pure Ar system for SB

0 (m1), SB
2 (m1)

and SB
4 (m1) are 882.01×10−43 J2, 947.3×10−17 J2 s−2 and

562.2×1010 J2 s−4, respectively. The corresponding results
obtained for Sl

0(m1), Sl
2(m1) and Sl

4(m1) are 1640.7 ×
10−43 J2, 1880.6× 10−17 J2 s−2 and 1184.3× 1010 J2 s−4,
respectively. Mass dependence of second and fourth sum
rules is obtained from equations (18), and (19), respec-
tively. The results obtained are shown in Figures 1 and 2
for c = 0.25 and 0.75. It is seen from the figures that with
the increase in mass ratio the values of the sum rules start
decreasing and this decrease is sharper for small mass ratio
and low mole fraction. But for large m2/m1 the decrease
in values sum rules is very slow. For example for c = 0.25,
S

l/B
2 is almost constant for m2/m1 larger than 12 while

for c = 0.75 it becomes constant for m2/m1 larger than 8.
By using these results for the sum rules in equation (20),
the variations of the ratio of the viscosity of the mixture
to the viscosity of the pure fluid as a function of mass ratio
and composition for an isotopic fluid have been obtained
and are shown in Figure 3. The solid line in Figure 3 shows
variations of the ratio of the viscosities with the mass ra-
tio at two different compositions (c = 0.25 and 0.75). For
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the linear model we obtain

η
l/B
mix = η

l/B
0

[
c + (1 − c)

(
m2

m1

)1/2
]

. (26)

On the other hand, for the exponential model we obtain

η
l/B
mix = η

l/B
0

[
m2

m1

](1−c)/2

. (27)

In the above equation η
l/B
0 is longitudinal/bulk viscos-

ity of pure fluid with mass m1. Predictions from equa-
tions (26) and (27) are shown in Figure 3 represented by
solid squares and circles, respectively. It can be seen from
the figure that at c = 0.25, the prediction of linear model
agrees well only for small mass ratios, i.e. for m2

m1
< 4. On

the otherhand, for m2
m1

> 4, the predictions of the expo-
nential model are better than those of the linear model.
At c = 0.75, the exponential model predicts better results
than the linear model for the entire range of mass ratios. It
is also noted that at higher mass ratios i.e. for m2/m1 > 8,
the increase in the bulk and longitudinal viscosities with
the mass ratio becomes very slow. To examine this large
mass ratio effect we consider limiting behavior of equa-
tion (20) for large mass ratio

ηl/B =
2n

πkBT

(
(Sl/B

0 )2

S
l/B
2

)(
S

l/B
4

S
l/B
2

)1/2

, (28)
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Fig. 3. Variation of the ratio of longitudinal viscosities of an
isotopic mixture to that of a pure fluid with mass ratio m2/m1

of particles of two species at c = 0.25 and c = 0.75. Solid
squares are results from the linear model and solid circles from
the exponential model. The solid lines are results obtained from
equation (20).

which for c � (1 − c)m1/m2 reduces to

η
l/B
mix = η

l/B
0

1√
2

(
1 + c

c2

)1/2

. (29)

This equation implies that a tracer (c � 1) does not af-
fect the viscosity of the solvent irrespective of its mass. It
further implies that the longitudinal/bulk viscosity of an
isotopic mixture is controlled more by molar composition
rather than by the ratio of particle masses for large mass
ratios. The maximum values that the viscosity can attain
for equimolar mixture is

√
3 times the viscosity of the pure

fluid. For c = 0.75 and c = 0.25 these limiting values are√
14/9 = 1.247 and

√
10 = 3.162, respectively. These val-

ues (shown as horizontal arrows) are in agreement with
those observed from the figure. Physically, this implies
that when the mass difference is large, transfer of mo-
mentum due to sudden compression prefers to take place
mainly through lighter particles and as a result the longi-
tudinal/bulk viscosity depends on composition of lighter
particles. It can also be seen from Figure 3 that none of
the empirical formulae is able to explain this behavior of
large mass ratios. There is, to our knowledge, no simu-
lation study to verify these results for isotopic mixtures.
However, such studies have been carried out both theo-
retically and through computer simulations for the self-
diffusion coefficients and it was found that heavy tracer
particle can have minimum value of self- diffusion which
is

√
1/2 times that of the solvent [25,26]. Here, it is noted

that the mass dependence of longitudinal and bulk vis-
cosities is very much similar to that of the shear viscosity
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Table 3. Results for zeroth, second and fourth sum rules of the
LSAC function for pure argon system at six thermodynamic
states in units of 10−43 J2, 10−17 J2 s−2 and 1010 J2 s−4,
respectively.

T ∗ n∗ Sl
0 Sl

2 Sl
4

0.73 0.844 1658.015 1004.086 426.537
1.19 0.584 1640.738 1880.594 1184.330
2.56 0.743 7088.385 18463.370 23886.190
3.46 0.500 6275.282 17215.350 29057.180
3.54 0.803 11971.383 45503.990 85383.720
4.45 0.803 16341.481 79322.190 194361.200

Table 4. Results for zeroth, second and fourth sum rules of the
BSAC function obtained from equations (12)–(14) for pure Ar
at six thermodynamic states in units of 10−43 J2, 10−17 J2 s−2

and 1010 J2 s−4, respectively.

T ∗ n∗ SB
0 SB

2 SB
4

0.73 0.844 943.555 467.609 129.755
1.19 0.584 882.017 947.385 562.271
2.56 0.743 3534.323 10173.163 11352.270
3.46 0.500 3274.432 8733.913 13636.970
3.54 0.803 5244.636 23742.320 48163.190
4.45 0.803 6925.770 45798.540 111246.900

of an isotopic system [20], so that the results presented
here for very large mass ratio are equally applicable.

In order to examine whether the above findings depend
on the thermodynamic state, we have calculated zeroth,
second and fourth sum rules of LSAC and BSAC func-
tions of pure fluid at six thermodynamic states. The re-
sults obtained are provided in Tables 3 and 4. The results
obtained for ηl/ηl

0 for c = 0.25 and 0.75 are shown in Fig-
ures 5 and 6, whereas for ηB/ηB

0 are shown in Figures 6
and 7. As evident from these figures that the viscosity does
not depend on temperature and density for low values of
the mass ratio. However, as m2/m1 increases, the influ-
ence due to thermodynamic states becomes apparent. The
value of ratio of viscosity of mixture to viscosity of pure
system is found to be lowest for the first thermodynamic
state corresponding to T ∗ = 0.73 and is maximum for the
sixth thermodynamic state corresponding to T ∗ = 4.45.
Here it may be noted that this influence is more evident
for longitudinal viscosity than for the bulk viscosity.

5 Summary and conclusions

Expressions for the zeroth, second and fourth sum rules
of the longitudinal and bulk stress auto correlation func-
tions have been derived for binary mixtures. These ex-
pressions have been put in a form suitable for numeri-
cal calculations. Numerical results have been obtained for
an equimolar Ar–Kr mixture. Longitudinal and bulk vis-
cosities of this mixture have been calculated using Mori’s
memory function formalism and the Green-Kubo relation.
Our method provides a good description of longitudinal
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Fig. 4. Variation of the ratio of the longitudinal viscosities of
an isotopic mixture obtained from equation (20)to that of a
pure system with mass ratio of particles of the two species at
c = 0.25 for six thermodynamic states. Solid line, dash line,
solid square, solid circle, solid star and solid three angle, re-
spectively represent the thermodynamic states given in Table 3
from top to bottom.
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Fig. 5. Same as Figure 4 but for c = 0.75.

and bulk viscosities of fluid mixture as has been judged by
comparing our results with that of MD simulation. Fur-
ther, predictions of the available mixing rules has been
compared with present results. We have also studied the
mass dependence of longitudinal and bulk viscosities for
a modeled mixture in which the two species differ only in
their particle masses. It is found that for very high mass
ratios viscosity of an isotopic mixture is controlled more
by molar composition than by masses. The variation of
the ratios of longitudinal and bulk viscosity of an isotopic
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Fig. 6. Variation of the ratio of the bulk viscosity of an isotopic
mixture obtained from equation (20)to that of a pure system,
with mass ratio at c = 0.25 for six thermodynamic states.
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solid triangle, respectively represent the thermodynamic states
given in Table 4 from top to bottom.
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Fig. 7. Same as Figure 6 but for c = 0.75.

mixture to those of a pure fluid, with the mass ratio for
different compositions have been investigated at six ther-
modynamic states. It is noted that the dependence is more
pronounced for the longitudinal viscosity than for the bulk
viscosity.

KT acknowledges the facilities provided to him as an Asso-
ciate of Abdus Salam ICTP, Trieste, Italy, where this work
was completed.

Appendix A: sum rules of LSAC function

The zeroth order sum rule for the LSAC function Sl
0 is

defined as
Sl

0 =
1
3
〈Jaa(0)Jaa(0)〉. (A.1)

Using equation (3) and evaluating the involved ensemble
averages, the expression obtained for Sl

0 after carrying out
angular integrations, is given by

Sl
0 = 4(kBT )2 +

2π

15
kBT

2∑
i,j=1

Ninj

×
∫ ∞

0

drr4gij(r)(3Aijr
2+5Bij)−5(V dP/dĒ)(kBT )2

−(PV )2 + (V dP/dĒ)2(6(kBT )2 − Ē2)

+2PV 2(dP/dĒ)
(

Ē − 3
2
kBT

)
. (A.2)

The expression obtained for the second and fourth sum
rules for binary mixture are, respectively, given as

Sl
2 =

4π

15
(kBT )2

2∑
i,j=1

Ninj

mi

∫ ∞

0

drr2gij(r)[(18Cijr
4

+ 165Aijr
2 + 225Bij) + r2(kBT )−1

× (3A2
ijr

4 + 5B2
ij + 6AijBijr

2)]

+
8π2

15
kBT

2∑
i,j,k=1

Ninjnk

mi

×
∫ ∞

0

dr

∫ ∞

0

dr1

∫ 1

−1

dβ1g
ijk
3 (r, r1)r2r2

1rr1β1

× [(Aijr
2 + Bij)(A1ijr

2
1 + 5B1ij) + 2β1AijA1ijr

2r2
1 ],

(A.3)

Sl
42 =

4π

15
(kBT )

2∑
i,j=1

Ninj
1
4

(
1

mi
+

1
mj

)2

×
∫ ∞

0

drgij(r)r2 [54(kBT )2

×(Dijr
4 + 10Cijr

2 + 15Aij) + kBT (1890B2
ij

+1504A2
ijr

4 + 2340AijBijr
2 + 216BijCijr

4

+324AijCijr
6 + 18C2

ijr
8) + 2r2(5B3

ij + 9AijB
2
ijr

2

+9A2
ijBijr

4 + 9A3
ijr

6]. (A.4)

In addition to the pair correlation function, the exact ex-
pression for Sl

4 contains triplet and quadruplet distribu-
tion functions. We estimate the triplet contribution to the
fourth sum rule from the knowledge of the expression for
pure fluids as explained in the Appendix B.

Appendix B: three body correlation function

For pure fluids there is the superposition approximation
for the calculation of triplet contribution. But for a bi-
nary mixture there is scarce of knowledge for extending
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the superposition approximation for pure fluid. Recently,
Kaushal and Tankeshwar [20] proposed the approximation
for a binary system given as

gijj
3 (r, r1) = gij(r)gij(r1)gjj(|r − r1|)(c + (1 − c)δij),

(B.1)
where c and 1 − c are molar compositions of species 1
and 2. This approximation is based on the fact that the
correlation between i and j species is direct, whereas cor-
relations among the same species is weaker and composi-
tion dependent. In the absence of one of the species and
also for an isotopic system this approximation reduces to
the Kirkwood superposition approximation. The results
obtained using this approximation for SB

23 are listed in
Table 1. For the triplet contribution to the fourth sum
rule of the LSAC/BSAC functions, we have estimated it
using the knowledge of the expression for pure system.
This method has been explained and successfully tested
by Kaushal and Tankeshwar [20]. However, for the sake of
completeness, we explain it below for the triplet contribu-
tion to second sum rule of the BSAC function. We write
SB

23 in reduced units i.e., the length in term of σ and the
energy in terms of ε, so that the integral is dimensionless.
In this way, we obtain the expression

SB
23 =

8π2

9
kBT

2∑
i,j=1

Nininj

mi
ε2ijσ

4
ijIij , (B.2)

where Iij is given by

Iij =
∫ ∞

0

dr�

∫ ∞

0

dr�
1

∫ 1

−1

dβ1g
ijk
3 (r, r1)r�2r�2

1 r�r�
1β1

× (A�
ijA

�
1ikr�2r�2

1 + B�
ikA�

1ijr
2
1 + A�

ijB
�
1ikr�2 + B�

ijB
�
1ij).

(B.3)

Here all the quantities are given in reduced units and de-
noted by the superscript �. We assume that the integrand
has the same value for all partial triplet correlation func-
tions. This is strictly correct in an isotopic system, but
with weighted values in terms of their different potential
strength (ε) and particle diameter (σ). Using a similar
procedure, the estimate for the triplet contribution to the
fourth sum rule is given in Table 1 for the BSAC function
and in Table 2 for the LSAC function.
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